Date | Week | Day | Class | Topic | Readings | HW out | HW in |
8/21 | 1 | M | 1 | Introduction to robotics | Ch1, Ch2 | ||
8/23 | W | 2 | Motion planning for point robots | Ch8, Ch9.1-3, C.1, C.2 | HW1 | ||
8/28 | 2 | M | 3 | Mobile robot planning, C-space | Ch9.4-6, Ch.11.1 | ||
8/30 | W | 4 | Mobile robot planning, C-space, cont | ||||
9/4 | 3 | M | — | ||||
9/6 | W | 5 | Sampling-based motion planning | Ch10.1-3 | HW2 | HW1 | |
9/11 | 4 | M | 6 | Sampling-based motion planning pt 2 | Ch10.4-6 | ||
9/13 | W | 7 | Kinodynamic motion planning | Ch11.1-2 | |||
9/18 | 5 | M | 8 | Kinodynamic motion planning (cont) | |||
9/20 | W | 9 | Trajectory optimization | Ch17.1,17.4-6 | HW3 | HW2 | |
9/25 | 6 | M | 10 | Trajectory optimization pt 2 | Ch17.1,17.4-6 | ||
9/27 | W | 11 | Constrained trajectory optimization | ||||
10/2 | 7 | M | 12 | Constrained trajectory optimization (cont) | |||
10/4 | W | 13 | Real time planning & control | HW3 | |||
10/9 | 8 | M | 14 | State estimation and uncertainty | A3, PR 2.1-3 | HW4 | |
10/11 | W | 15 | Probabilistic Gaussian filtering | PR 2.4-6, 3.1. An Introduction to the Kalman Filter | |||
10/16 | 9 | M | 16 | Probabilistic filtering | PR 3.2-3, An Introduction to the Kalman Filter | ||
10/18 | W | 17 | Particle filtering | PR 4 | |||
10/23 | 10 | M | 18 | System ID and prediction | HW5 | HW4 | |
10/25 | W | 19 | System ID and prediction, cont | ||||
10/30 | 11 | M | 20 | Rigid registration | CVAA 11.1-3 | ||
11/1 | W | 21 | 3D mapping | PR 7.1-4 | |||
11/6 | 12 | M | 22 | SLAM | PR 7.5-6, 8.1-3 | HW6 | HW5 |
11/8 | W | 23 | Integrating planning and perception | ||||
11/13 | 13 | M | 24 | Planning under uncertainty | |||
11/15 | W | 25 | Planning with partial observability | ||||
11/20 | 14 | M | — | ||||
11/22 | W | — | |||||
11/27 | 15 | M | 26 | Reinforcement learning | HW6 | ||
11/30 | W | 27 | Reinforcement learning, cont | ||||
12/4 | 16 | M | 28 | Learning-based planning | |||
12/6 | W | 29 | Task and motion planning |
Assignments
HW1 Geometric motion planning
HW2 Sampling-based and kinodynamic planning
HW3 Trajectory optimization and optimal control
HW4 Probability
HW5 Probabilistic filtering
HW6 SLAM and 3D mapping
Take-home final: choice of planning / perception